Models
apply_ZH_regression(ds, flow_stress_key='flow_stress_MPa', ZH_key='ZH_parameter', group_by=None)
Do a linear regression for LnZ vs flow stress. #todo link
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
ds |
DataSet
|
DataSet to be fitted. |
required |
flow_stress_key |
str
|
Info key for the flow stress value. |
'flow_stress_MPa'
|
ZH_key |
str
|
Info key for the ZH parameter value. |
'ZH_parameter'
|
group_by |
Union[str, List[str]]
|
Info key(s) to group by. |
None
|
Returns:
| Type | Description |
|---|---|
DataSet
|
The DataSet with the Zener-Holloman parameter and regression parameters added to the info table. |
Source code in paramaterial\models.py
calculate_ZH_parameter(di, temperature_key='temperature_K', rate_key='rate_s-1', Q_key='Q_activation', gas_constant=8.1345, ZH_key='ZH_parameter')
Calculate the Zener-Holloman parameter using
where \(\dot{\varepsilon}\) is the strain rate, \(Q\) is the activation energy, \(R\) is the gas constant, and \(T\) is the temperature.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
di |
DataItem
|
DataItem object with \(\dot{\varepsilon}\), \(Q\), \(R\), and \(T\) in info. |
required |
temperature_key |
str
|
Info key for mean temperature |
'temperature_K'
|
rate_key |
str
|
Info key for mean strain-rate rate |
'rate_s-1'
|
Q_key |
str
|
Info key for activation energy |
'Q_activation'
|
gas_constant |
float
|
Universal gas constant |
8.1345
|
ZH_key |
str
|
Key for Zener-Holloman parameter |
'ZH_parameter'
|
Source code in paramaterial\models.py
iso_return_map(yield_stress_func, return_vec='stress')
Wrapper for a yield function that describes the plastic behaviour.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
yield_stress_func |
Callable
|
Yield stress function. |
required |
return_vec |
str
|
Return vector. Must be one of 'stress', 'plastic strain', 'accumulated plastic strain'. |
'stress'
|
Source code in paramaterial\models.py
linear(mat_params)
make_ZH_regression_table(ds, flow_stress_key='flow_stress_MPa', rate_key='rate_s-1', temperature_key='temperature_K', calculate=True, group_by=None)
Make a table of the Zener-Holloman regression parameters for each group.
Source code in paramaterial\models.py
perfect(mat_params)
plot_ZH_regression(ds, flow_stress_key='flow_stress_MPa', rate_key='rate_s-1', temperature_key='temperature_K', calculate=True, figsize=(6, 4), ax=None, cmap='plasma', styler=None, plot_legend=True, group_by=None, color_by=None, marker_by=None, linestyle_by=None, scatter_kwargs=None, fit_kwargs=None, eq_hscale=0.1)
Plot the Zener-Holloman regression of the flow stress vs. temperature.
Source code in paramaterial\models.py
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | |